Deliver Your News to the World

University of Colorado Opens Lab Focused on Detecting, Treating Pharmaceuticals in Water; Agilent Technologies Provides Core Instrumentation


The University of Colorado’s Department of Civil, Environmental and Architectural Engineering today announced the opening of the Center for Environmental Mass Spectrometry (CEMS), a laboratory focusing on the detection of pharmaceuticals, hormones, and other organic contaminants in water and evaluating the effectiveness of methods for removing these compounds. Agilent Technologies Inc. (NYSE: A) is providing the core liquid chromatograph/mass spectrometer (LC/MS) instrumentation for the lab.

The topic of pharmaceuticals in drinking water recently gained increased visibility when an Associated Press survey revealed that an assortment of drugs including antidepressants, antibiotics and birth control prescriptions were detected in the municipal drinking water of 24 major metropolitan areas serving 41 million Americans.

CEMS was established at the University of Colorado by Imma Ferrer, research Ph.D.; Karl Linden, Ph.D.; and E. Michael Thurman, research Ph.D. Thurman, a 30-year veteran of the United States Geological Survey (USGS) in water testing, also spent five years in Spain, where Ferrer and he worked at the first LC/MS accurate mass facility in Spain for the analysis of pesticides in food. Ferrer is the chief analyst of CEMS and is responsible for the highest quality accuracy measurements and operation of the laboratory. Professor Linden directs research on the treatment of pharmaceuticals in water and plays a key role in laboratory development and design. Furthermore, CEMS has a collaborative agreement with Larry Barber, Ph.D., of the USGS for the sampling and analysis of pharmaceuticals in the environment.

“Pharmaceuticals are biologically active compounds designed specifically to affect the human body,” said Thurman. “Low concentrations of parts-per-billion or parts-per-trillion generally aren’t considered dangerous over the short term, but no one knows about the long-term human and ecological effects. There are also troubling effects on wildlife, such as male fathead minnows that are becoming ’feminized’ from traces of the human birth-control compound EE2 in streams at concentrations of parts-per-trillion. This is noteworthy on a number of levels.”

“Agilent is proud to support this innovative lab because few things are as fundamental to quality of life as clean drinking water,” said Mike McMullen, vice president and general manager, Agilent Chemical Analysis Solutions Unit. “Over the years, global markets have demanded greater and greater analytical power in the quest for a cleaner environment with safer food, water and air. This is an excellent example of how our technology is being used for the greater good.”

Barber and Thurman, co-authors of a 2002 USGS white paper titled “Water-Quality Data for Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999-2000.” have worked closely together on this topic and will continue their collaboration through CEMS. The paper captured the imagination of the scientific community, becoming the most-cited article in the history of the journal Environmental Science & Technology. It described the first nationwide reconnaissance of pharmaceuticals, hormones and other organic wastewater contaminants (OWC) in 135 streams in 30 states. Samples were tested for 95 compounds, and at least one OWC was detected in 80 percent of the streams sampled.

“Traditionally, the topics that scientists were working on didn’t enter the public consciousness for about 10 years,” Thurman observed. “Now, people are much more educated and sensitive about health and environmental matters, because they recognize how factors like pollution, diet and lifestyle affect them personally.”

Accurate Mass Spectrometry.

To measure trace amounts of compounds and detect unknowns in complex water samples, CEMS requires an LC/MS system with very high mass accuracy, mass resolution, sensitivity and speed. Through their previous work in food testing with Agilent applications scientist Jerry Zweigenbaum, Ph.D., Ferrer and Thurman became aware of the Agilent 6220 Accurate Mass Time-of-Flight LC/MS system, and Agilent agreed to loan a complete system to the lab at no charge. The system’s list price is approximately $270,000.

“The mass accuracy of the Agilent TOF rivals much more expensive FTMS and orbital trapping instruments,” said Ferrer, chief analyst of CEMS. Ferrer and Thurman showed the power of accurate mass in Spain by measuring the mass of an electron by LC/TOF-MS on several pharmaceuticals, publishing this paper in 2005 in Analytical Chemistry.

The new Agilent LC/MS system with resolving power of approximately 20,000 was introduced last November, and it contains a number of design features that are well-suited for environmental analysis where scientists must detect very small quantities of chemicals in complex mixtures.

The Agilent instrument is sensitive down to the attomole (one quintillionth, or 10 to the negative 18 power of a mole) range, and offers better than two parts-per-million mass accuracy, which gives scientists high confidence in their data and helps them easily identify the compounds they find. The 32 Gbit/second high-speed data acquisition electronics provide very high mass resolution to 20,000. The system incorporates proprietary dual-gain analog to digital (ADC) time-of-flight electronics for a tenfold improvement of dynamic range -- now approaching up to five orders of magnitude. MassHunter Workstation software is included with the Agilent 6220 system, providing advanced data mining functions.

Linden agrees with the Associated Press study that pharmaceuticals enter the water supply because drugs are only partially absorbed by people; metabolites and some parent compound are being excreted into sewage systems that are not designed to specifically remove these compounds. Animals are another source of drug contamination. Commercial chicken-raising operations, for example, frequently include antibiotics with the chicken feed, and residues can enter groundwater.

“Basic water-treatment technology, both for wastewater and for drinking water, has changed in recent years, now including treatment by ozone, UV and carbon,” Linden observes as the lead scientist on water treatment at CEMS. “We’re looking at the problem from a number of angles. First, to help define this growing problem and to underscore the need for more testing and treatment at the municipal level. We also intend to work with people around the world to help find solutions such as evaluating various water-treatment options.”


This news content was configured by WebWire editorial staff. Linking is permitted.

News Release Distribution and Press Release Distribution Services Provided by WebWire.