Deliver Your News to the World

Polymer Morphology - Very Powerfull Tool in Product Improvement

Announcing Atlas of Material Damage, which contains analysis of a large number of microscopic pictures and schematic diagrams explaining how molecular structure may enhance materials properties and durability


Atlas of Material Damage has 464 microscopic pictures, schematic diagrams, and a few graphs, which show how materials fail, how they are produced to not fail, and how they are designed to perform particular functions to make outstanding products. Findings presented by each illustration are fully explained in the text and labeled.

In the near past, products were distinguished by their formulations, which constituted highly guarded commercial secrets and know-how. Today, this is not enough. MATERIALS, TO COMPETE, must have optimal structure and specially designed morphology. This book gives numerous examples of how this special morphology can be achieved in electronics, the plastics industry, the pharmaceutical industry, aerospace, automotive applications, medicine, dentistry, and many other fields (see full list at the end).

It is pertinent from the above that methods described by one branch of industry can be adapted by others. For example, technology that powers the slow or targeted release of pharmaceutical products can be used successfully to prevent premature loss of vital additives from plastics.

Product reliability is the major aim of technological know-how. Uninterrupted performance of manufactured products at both typical and extreme conditions of their use is the major goal of product development and the most important indicator of material quality.

This book provides information on defects formation, material damage, and the structure of materials that must perform designed functions. The following aspects of material performance are discussed:
1 Effect of composition, morphological features, and structure of different materials on material performance, durability, and resilience
2 Analysis of causes of material damage and degradation
3 Effect of processing conditions on material damage
4 Effect of singular and combined action of different degradants on industrial products
5 Systematic analysis of existing knowledge regarding the modes of damage and morphology of damaged material
6 Technological steps required to obtain specifically designed morphology required for specific performance
7 Comparison of experiences generated in different sectors of industry regarding the most frequently encountered failures, reasons for these failures, and potential improvements preventing future damage

The above information is based on the most recent publications. Only 3% of sources were published before 2000 and about 65% appeared in 2009-2012.

The name “Atlas” was selected to indicate the emphasis of the book on illustrations, with many real examples of damaged products and discussion of the causes of damage and potential for material improvements.

This book should be owned and frequently consulted by engineers and researchers in: adhesives and sealants, aerospace, appliances, automotive, biotechnology, coil coating, composites, construction, dental materials, electronics industry, fibers, foams, food, laminates, lumber and wood products, medical, office equipment, optical materials, organics, metal industry, packaging (bottles and film), paints and coatings, pharmaceuticals, polymers, rubber, and plastics, printing, pulp and paper, ship building and repair, stone, textile industry, windows and doors, wires and cables.

Professors and students in the above subjects will require this book for a complete survey of modern technology.



This news content may be integrated into any legitimate news gathering and publishing effort. Linking is permitted.

News Release Distribution and Press Release Distribution Services Provided by WebWire.